Nature of the Quantum Ferromagnetic Phase Transition

D. Belitz, University of Oregon, DMR-01-32555 T.R. Kirkpatrick, Univ. of Maryland, DMR-01-32726

Phase transitions can be either

- first order: An observable ("order parameter") changes discontinuously or
- second order: The order parameter changes continuously

Ferromagnetic transitions in zero field are normally second order

Observation: In ferromagnets where the transition temperature can be tuned to zero, the transition often turns first order at very low temperatures Examples: MnSi (see figure), UGe₂, ZrZn₂

Theory: A theory developed by the PIs and their collaborators shows:

- The ferromagnetic transition at very low temperatures is generically first order in clean materials, but second order in disordered ones
- The physical mechanism is the same as the one for a first order transitions in nematic liquid crystals, and closely related to the Coleman-Weinberg mechanism for mass generation in particle physics

Phase diagram of MnSi (after Pfleiderer et al 1997)

Conclusion: The theory not only explains the observations, it also illustrates amazing analogies between different fields of condensed matter physics, and even between condensed matter physics and particle physics

Nature of the Quantum Ferromagnetic Phase Transition

D. Belitz, University of Oregon, DMR-01-32555 T.R. Kirkpatrick, Univ. of Maryland, DMR-01-32726

Education and Development of Human Resources:

Personnel involved with projects supported by these two grants include,

- Qi Li, current graduate student
- Annemarie Rey, current graduate student and Staff Scientist, NIST
- Jörg Rollbühler, current postdoc
- Sharon Sessions, former graduate student, currently Vis. Asst. Prof., New Mexico Tech
- Ryan Shannon, current graduate student
- Ken Snyders, current graduate student and Staff Scientist, NIST
- Sumanta Tewari, current postdoc
- Thomas Vojta, former postdoc, currently Asst. Prof., Univ. of Missouri
- Lubo Zhou, current graduate student

Outreach and Synergistic Activities:

• The PIs, together with T. Vojta, served as scientific coordinators for an international workshop at the MPIKS Dresden that drew roughly 100 participants

Quantum Phase Transitions

seminar: June 23 - July 25, 2003 workshop: July 10 - 12, 2003

Scientific Coordinators:

- · Dietrich Belitz (University of Oregon, USA)
- Theodore R. Kirkpatrick (University of Maryland, USA)
- · Thomas Vojta (University of Missouri, USA)

Organisation:

Katrin Lantsch (MPIPKS Dresden, Dresden, Germany)

For further information contact: qpt2003@mpipks-dresden.mpg.de

• PI Belitz served as organizer of a Mini-Colloquium at the European Physical Society Meeting in Prague, Czech Republic, in July 2004